Long-Term Control Plan Update

Progress Report

VDEQ May 11, 2015

AGENDA

- □Technical Memoranda Status Update
- □ Alternatives for Detailed Evaluation
- ■Water Quality Modeling
 - □ Presumption Approach
 - □Demonstration Approach
 - □Waste Load Allocation
- □Phase 2 Public Outreach
- □Next Steps

Technical Memoranda Status

Tech Memo	Status – Provide to DEQ
Work Plan	Complete – May 2014
CSS Characterization	Complete – September 2014
Flow Projections	Complete – September 2014
Typical Year Selection	Complete – September 2014
Regulatory Requirements	Complete – October 2014
Public Participation Plan	Complete – October 2014
CSS Sewershed Changes	Complete – January 2015
H&H Modeling Plan	Complete – January 2015
CSO Technologies Screening	Complete – January 2015
Evaluation Criteria	Draft Final Status
Basis for Cost Estimating	Draft Final Status
Detailed Alternatives Evaluation (5)	Draft Final Status
Water Quality Modeling	Draft Final Status
Ranking and Recommendation	Draft Final Status

LTCPU Decision Process

CSO Technologies Screening (43 Technologies)

Preliminary Alternatives Evaluation (12 Site Specific Alternatives)

CSO Control Strategies (9 Strategies)

Ranking and Scoring

Short List of CSO Control Strategies

Evaluation Criteria

Medium

(3 points)

Moderate Cost

Reduction 50-74%

Moderate bacteria

reduction

Some negative

impact during

implementation

Few options and

space for expansion

Base score + 16-25

Nitrogen: 1,000 -

1,499

Phosphorous: 200 -

299

Sediment: 20,000 -

29,999

Moderate risk of

permitting issues

Frequent

maintenance

"Yes" to 4 questions "Yes" to 3 questions

Minimal

(1 point)

Highest Cost

<25% reduction

Minimal bacteria

reduction

"Yes" to 1 or 0

questions

No opportunities for

expansion

Base score + 0-5

Nitrogen: 0 - 499

Phosphorous: 0 - 99

Sediment: 0 - 9,999

Excessive negative impact during

implementation

Significant risk of permitting issues

Frequent and expensive maintenance

None

(o points or N/A)

N/A

No reduction

No reduction

"Yes" to o

N/A

N/A

N/A

No opportunity for

credits

N/A

N/A

Low

(2 points)

High Cost

Reduction 25-49%

Low bacteria

reduction

"Yes" to 2 questions

Limited options and

space for expansion

Base score + 6-15

Nitrogen: 500 - 999

Phosphorous: 100 -

199

Sediment: 10,000 -

19,999

	Evaluation Chiena
Evaluation	Example Rating Score Qualifications

	Lvaluation Citteria
Evaluation	Example Rating Score Qualifications

Eval	uatio	n Crit	teria

Evaluation Criteria	

High

(4 points)

Low Cost

Reduction 75-95%

High bacteria

reduction

Base score + 26-35

Nitrogen: 1,500 -

1,999

Phosphorous: 300 -

399

Sediment: 30,000 -

39,999

Minimal risk of

permitting issues

Few and infrequent

maintenance

EV	aiuati	on Cr	iteria

Evaluation	Example Rating Score Qua

Improved quality of live and minimal negative

impact during implementation

Multiple options and space for expansion

Very High

(5 points)

Lowest Cost

>95% reduction

Removal of all bacteria

from Hunting Creek

"Yes" to 5 questions

Base score +>35

Nitrogen: >2,000

Phosphorous: >400

Sediment: >40,000

No risk of permitting

issues

No required

maintenance

Criteria

CSO Reduction

Effectiveness

Impact to the

Expandability (2.5%)

Net Environmental

Nutrient Credits for

the Chesapeake Bay

Permitting Issues

Community

Benefit

TMDL

Required

Maintenance

Implementation

(Volume)

Effort

Cost

(40%)

(10%)

(15%)

(5%)

(10%)

(5%)

(5%)

(2.5%)

(5%)

Technologies Evaluated

- Stormwater Management
 - Street/Parking Lot Storage (catch basin control)
 - Catch Basin Modification (for floatables control)
 - Green Infrastructure
- Public Education & Outreach
 - Water Conservations
 - Catch Basin Stenciling
 - Community Cleanup Programs
 - Public Education Programs
 - FOG Program
 - Garbage Disposal Restriction
 - Pet Waste Management
- * Ordinance Enforcement
 - Construction Site Erosion & Sediment Controls
 - Illegal Dumping Control
 - Pet Waste Control
 - Litter Control
 - Illicit Connection Control

- Good Housekeeping
 - Street Sweeping / Flushing
 - Leaf Collection
 - Recycling Programs
- Operation & Maintenance
 - I/I Reduction
 - Advanced System Inspection & Maintenance
 - Combined Sewer Flushing
 - Catch Basin Cleaning
- Combined Sewer Separation
 - Roof Leader Disconnection
 - Sump Pump Disconnection
 - Complete Separation
- Combined Sewer Optimization
 - Conveyance
 - Regulator Modifications
 - Outfall Consolidation / Relocation
 - Real Time Controls
- * Linear Storage
 - Pipeline
 - Tunnel

- Point Storage
 - Tank
 - Wet Weather Storage Basin AlexRenew WRRF
- Treatment CSO Facility
 - Vortex Separators
 - Screens
 - Netting
 - Contaminant Booms
 - Baffles
 - Disinfection
 - High Rate Physical / Chemical Treatment (ActiFlow®)
 - High Rate Physical (Fuzzy Filters®)
- Treatment WRRF
 - Additional Treatment Capacity AlexRenew WRRF
 - Wet Weather Blending AlexRenew WRRF

Technologies for Consideration

- StormwaterManagement
 - GreenInfrastructure
- Combined Sewer Separation
 - CompleteSeparation
- Linear Storage
 - Tunnel

- Point Storage
 - Tank
- Treatment CSO Facility
 - Disinfection

Alternatives for Detailed Evaluation

Technology Alternatives

Alternative	Technology	Outfall	Receiving Waters
T1	Storage Tunnel	CSO-003/4	Hooffs Run
T2	Storage Tunnel	CSO-002/3/4	Hooffs Run & Hunting Creek Embayment
T3	Storage Tunnel	CSO-002/3/4	Potomac River
T4	Storage Tunnel	CSO-002	Potomac River
ST002	Storage Tank	CSO-002	Hunting Creek Embayment
SToo3/4	Storage Tank	CSO-003/4	Hooffs Run
D002	Disinfection Tank	CSO-002	Hunting Creek Embayment
D003/4	Disinfection Tank	CSO-003/4	Hooffs Run
SE002	Full Separation	CSO-002	None
SE003/4	Full Separation	CSO-003/4	None
Gloo2	Green Infrastructure	CSO-002	Hunting Creek Embayment
Gl003/4	Green Infrastructure	CSO-003/4	Hooffs Run

Summary of CSO Control Strategies

CSO Control Strategy	Combination of Technology Alternatives	Receiving Waters
One Storage Tunnel for CSO-002/3/4	T2-A	Hooffs Run
One Storage Tunnel CSO-002/3/4 and Outfall Relocation to the Potomac	Т3-А	Potomac River
Separate Storage Tunnels CSO-002 and CSO-003/4 and	T1-A	Hooffs Run
Outfall Relocation for CSO-002 to the Potomac	T4-A	Potomac River
All Storago Tanks	ST003/4-A	Hooffs Run
All Storage Talliks	ST002-A	Hunting Creek Embayment
All Disinfection	D003/4-A	Hooffs Run
	D002-A	Hunting Creek Embayment
All Congration	SE003/4-King & West	N/A
All Separation	SE002-Royal	N/A
Storage Tunnel for CSO-003/4 and Storage Tank at CSO-002	T1-A	Hooffs Run
	ST002-A	Hunting Creek Embayment
Storage Tunnel for CSO 202/4 and Disinfection at CSO 202	T1-A	Hooffs Run
Storage Tunnel for CSO-003/4 and DISInfection at CSO-002	D002-A	Hunting Creek Embayment
All Croop Infrastructure	Gloo3/4-King & West	Hooffs Run
All Green Infrastructure	GI002-Royal	Hunting Creek Embayment
	One Storage Tunnel for CSO-002/3/4 One Storage Tunnel CSO-002/3/4 and Outfall Relocation to the Potomac Separate Storage Tunnels CSO-002 and CSO-003/4 and Outfall Relocation for CSO-002 to the Potomac All Storage Tanks All Disinfection All Separation	One Storage Tunnel for CSO-002/3/4 One Storage Tunnel CSO-002/3/4 and Outfall Relocation to the Potomac Separate Storage Tunnels CSO-002 and CSO-003/4 and Outfall Relocation for CSO-002 to the Potomac All Storage Tanks All Disinfection All Separation Storage Tunnel for CSO-003/4 and Storage Tank at CSO-002 Storage Tunnel for CSO-003/4 and Disinfection at CSO-002 All Green Infrastructure Technology Alternatives T2-A T3-A T1-A ST003/4-A ST003/4-A ST002-A SE003/4-King & West T1-A ST002-A ST002-A Gl003/4-King & West

Scenario B Alternatives

- Cost 3-5 times more than the Scenario A alternatives
- Siting the very large infrastructure is extremely difficult in the highly urbanized area of Old Town
- * Includes an extreme 67-year rainfall event
- Not needed for the Presumption Approach
- Scenario A sizing meets the 2004-2005 TMDL period Demonstration Approach requirements
- Scenario A sizing meets the 2004-2005 TMDL period Waste Load Allocation with Collective Consistency

S-1: One Storage Tunnel for CSO-002/3/4

S-2: One Storage Tunnel for CSO-002/3/4 and Outfall Relocation to the Potomac

S-3: Separate Storage Tunnels CSO-002 and CSO-003/4 and Outfall Relocation for CSO-002 to the Potomac

Total Cost: \$103.9M (includes nutrient credits)

T1-A:

- 8-ft diameter tunnel
- * 2,600-LF
- * 3 overflows per year (96.9% capture)
- Overflows to Hooffs Run

T4-A:

- * 15-ft diameter tunnel
- * 1,700-LF
- 4 overflows per year (94.2% capture)
- Overflows to Potomac River

16

Virginia Potomac Waters To be Confirmed

S-4: All Storage Tanks

Total Cost: \$89.4M (includes nutrient credits)

ST003/4-A

- * 0.8 MG storage tank
- 4 overflows per year (96.1% capture)
- Overflows to Hooffs Run

ST002-A

- * 2.0 MG storage tank
- 4 overflows per year (94.2% capture)
- Overflows to Hunting Creek Embayment

S-5: All Disinfection

Total Cost: \$68.7M (no nutrient credits)

19

D003/4-A

- 2,000 gallon chemical storage tank
- No CSO volume reduction
- * Overflows to Hooffs Run

D002-A

- * 4,400 gallon chemical storage tank
- No CSO volume reduction
- Overflows to Hunting Creek Embayment

S-6: All Separation

- * CSS Area ≈ 314 acres
- Assuming a 17-year schedule
- 19 acres under construction continuously for 17 years
- * Assumes Year 1 starts in 2018
- Construction ends at the end of 2035
- Not as much bacteria reduction as store and treat
- Additional area added to City's MS4 permit
- * Total Cost: \$325.1M
 (additional nutrient costs)

S-7: Storage Tunnel for CSO-003/4 and Storage Tank at CSO-002

HGL Control Structure and Dropsha

Total Cost: \$99.6M (included nutrient credits)

T-1

- 8-ft diameter tunnel
- * 2,600-LF
- * 3 overflows per year (96.9% capture)
- * Overflows to Hooffs Run

ST002-A

- 2.0 MG storage tank
- 4 overflows per year (94.2% capture)
- Overflows to Hunting Creek Embayment

S-8: Storage Tunnel for CSO-003/4 and Disinfection at CSO-002

Total Cost: \$84.1M (includes nutrient credits)

T-1

- 8-ft diameter tunnel
- * 2,600-LF
- * 3 overflows per year (96.9% capture)
- Overflows to Hooffs Run

D002-A

- 4,400 gallon chemical storage tank
- No CSO volume reduction
- Overflows to Hunting Creek Embayment

22

S-9: All Green Infrastructure

- 100% GI Implementation
 - What If Analysis
 - Target 100% of City-owned parcel area
 - Target 100% of City Right-of-Way area
 - 2.0 MG capture per 1" storm

- Realistic GI Implementation
 - Target 60% of City-owned property area
 - Target 10% of City Right-of-Way area
 - 340,000 gallon capture per1" storm

	Overflow	100 ⁹ Implem	
Year	Volume (MG)	(MG)	(%)
1984	60.8	52.9	13.0%
2004-2005	162.1	152.8	5.7%

Control Strategy Ranking

Rank	Strategy No.	CSO Control Strategy
1	S-7	Storage Tunnel for CSO-003/4 and Storage Tank at CSO-002
2	S-3	Separate Storage Tunnels CSO-002 and CSO-003/4 and Outfall Relocation for CSO-002 to the Potomac
3	S-1	One Storage Tunnel for CSO-002/3/4
4	S-4	All Storage Tanks
5	S-8	Storage Tunnel for CSO-003/4 and Disinfection at CSO-002
6	S-2	One Storage Tunnel CSO-002/3/4 and Outfall Relocation to the Potomac
7	S-5	All Disinfection
8	S-9	All Green Infrastructure
9	S-6	All Separation

Regulatory Pathways

LTCPU Flow Chart

Presumption Approach Performance

Presumption Approach Performance

Technology	# of Overflows per Year	% Capture*	% CSO Volume Reduction*	% Bacteria Reduction*
T1-A	3	96.9%	88.5%	88.5%
T2-A	4	95.4%	85.7%	85.7%
T3-A	4	95.4%	85.7%	85.7%
T4-A	4	94.2%	85.8%	85.8%
ST002-A	4	94.2%	85.8%	85.8%
SToo3/4-A	4	96.1%	81.7%	81.7%
D002-A	53	59.6%	0%	99%
D003/4-A	60	78.9%	0%	99%
SE002	0	N/A	100%	72%
SE003/4	0	N/A	100%	78%
Gloo2	40-50	60%-70%	10%-20%	10%-20%
Gl003/4	40-50	75%-85%	10%-20%	10%-20%

^{*} based on overflows during the Typical Year 1984

Short Listed Strategies Exceed Presumption Criteria (Except GI)

Strategy	Description	Presumption Option i Overflows/Year 6 Maximum	Presumption Option ii % Capture 85% Minimum	Presumption Option iii Equivalent Load 85% Minimum
S-7	Storage Tunnel for 003/4 and Tank at 002	3-4	>94	>94
S-3	Separate Storage Tunnels 002 and 003/4 and Outfall Relocation for 002 to the Potomac	3-4	>94	>94
S-1	Storage Tunnels for 002/3/4	4	>94	>94
S-4	All Storage Tanks	4	>94	>94
S-8	Storage Tunnel for CSO- 003/4 and Disinfection at CSO-002	3-4	>94	>94

Presumption Approach Conclusions

- * All the Alternatives (except green infrastructure) meet or exceed the Presumption approach criterion for overflows per year (4 6 overflows per year)
- * All the Alternatives (except green infrastructure) greatly exceed the Presumption approach criterion of volumetric capture (85% capture)
- * All the Alternatives (except green infrastructure) greatly exceed the Presumption Approach criterion addressing capture for treatment (treat 85% of the overflow volume)

Demonstration Approach Water Quality Modeling

Demonstration Approach Key Matters

- * WWTP (Load Collective Consistency)
- Potomac Boundary
- Proportional v. Discrete Controls
- * Decay Rates

Model Scenario Runs

- * 3 Model Scenarios were all run against the 2004-2005 climate period:
 - Scenario 1 Verification with previous VIMS model
 - Scenario 2 1984 CSO control sizing, Collective Consistency,
 DEM-based Potomac River boundary conditions, DEM-based
 bacteria decay rate of 1.5/day
 - Scenario 3 1984 CSO control sizing, DEM-based Potomac River boundary conditions, DEM-based bacteria decay rate of 1.5/day

Scenario 1

Verification with VIMS previous modeling

Scenario 1 (Verification) vs. TMDL Base: Upstream Hunting Creek -ELCIRC-predicted Daily and Monthly *E. coli* Concentrations

Scenario 1 (Verification) vs. TMDL Base: Hunting Creek Embayment - ELCIRC-predicted Daily and Monthly *E. coli* Concentrations

Scenario 1 – proportional control of CSOs

Scenario 2

CSOs with Controls do not Cause or Contribute

Scenario 2 vs. TMDL Base: Hunting Creek Embayment - ELCIRC-predicted Daily and Monthly E. coli Concentrations

 Scenario 2 – 1984 CSO control sizing, Collective Consistency, DEM-based Potomac River boundary conditions, DEM-based bacteria decay rate of 1.5/day 35

Scenario 3

CSOs with Controls do not Cause or Contribute

Scenario 3 vs. TMDL Base: Hunting Creek Embayment - ELCIRC-predicted Daily and Monthly E. coli Concentrations

 Scenario 3 – 1984 CSO control sizing, DEM-based Potomac River boundary conditions, DEM-based bacteria decay rate of 1.5/day

Demonstration Approach Conclusions

Not Needed

* WWTP Load (collective consistency)

Potentialy Needed

PotomacBoundary

Needed

- Proportional vs.Discrete Controls
- * Decay Rates

Demonstration Matters

- * With Discrete Controls and DEM decay rate
 - The Alternatives under consideration do not cause or contribute to WQS violations using the 2004-2005 climate period
 - Collective Consistency is not needed
 - The CSO discharges can be viewed as a single allocation for the purposes of evaluating the WLA because they do not individually or together cause or contribute.

Demonstration Conclusion

- The alternative CSO Controls are adequate to meet WQS based on the WLA and LA to other pollution sources in the Hunting Creek TMDL;
- The CSO discharges remaining after implementation of the planned control program will not preclude the attainment of WQS or the receiving waters' designated uses or contribute to their impairment;
- 3. The planned control program provides the maximum benefits reasonably attainable; and
- 4. Green Infrastructure can be implemented if additional controls are subsequently determined to be necessary to meet WQS.

Presumption/Demonstration Level of Control

- * The Demonstration Conclusions indicate that the presumption level of control for the selected alternatives (four overflows per year) exceeds that required to meet water quality standards and a level of control lower than that chosen would be adequate to meet the CSO Policy.
- * Actual Level of Control to be constructed may be revisited after a alternative selection is made.

City of Alexandria, Virginia

Waste Load Allocation Evaluation

Waste Load Allocation Evaluation

- * Annual Waste Load Allocation Control
- Collective Consistency
- Climate Period Considerations

Waste Load Allocation for COA Combined Sewer System - Discrete Controls

			Selected Alternatives Performance			:e
			Typical Year – 1984		TMDL Climate Period 2005	
Alternative	Outfall	Wasteload Allocation (cfu/year)	Load (cfu/year)	Meets Allocation?	Load (cfu/year)	Meets Allocation?
Category I -	002	6.26E+13	2.48E+13	Yes	2.07E+14	No
Hoofs	003/004	1.61E+12	7.90E+12	No	1.14E+14	No
Run/Hunting Creek Embayment	Total	6.42E+13	3.27E+13	Yes	3.22E+14	No
Category II -	002	6.26E+13	0	Yes	0	Yes
Hoofs	003/004	1.61E+12	7.90E+12	No	1.14E+14	No
Run/Potomac	Total	6.42E+13	7.90E+12	Yes	1.14E+14	No

2004-2005 Load Deficit Discrete Collective Consistency

Alternative	Total Allocation (cfu/year)	Category Load TMDL Climate Period 2005 (cfu/year)	Category Deficit (cfu/year)
Category I - Hoofs Run/Hunting Creek Embayment	6.42E+13	3.22E+14	-2 . 58E+14
Category II – Hooffs Run/Potomac	6.42E+13	1.14E+14	-4.98E+13

^{* 2004} annual load is less than the 2005 annual load

October 2005 Storm

Weibull Return Period =
$$\frac{NMY + 1 - 2A}{M - A}$$

NMY = 40 = number of years

M = event rank in descending order

A = 0.4 = Weibull Position Parameter

Weibull Return Period =
$$\frac{40 \text{ years} + 1 - (2 * 0.4)}{1 - 0.4} = 67 \text{ year event}$$

Year	Event	Rainfall (in)	Duration (hrs)	NOAA IDF Return Frequency ¹	Weibull Return Frequency ²
2005	Oct. 7	7.30	39	43-year	67-year
2004	Aug. 12	2.43	6	3-year	1.1-year

¹ Return period interpolated from the Alexandria IDF curves developed in Atlas 14, Volume 2, Version 3

² Weibull Return Period based on 40 years used in the Typical Year Selection TM (1974-2013)

Waste Load Allocation for COA Combined Sewer System – without 2005 Extreme Storm

			TMDL Climate Period 2005		
Alternative	Outfall	Wasteload Allocation (cfu/year)	Load (cfu/year)	Meets Allocation?	
Category I - Hoofs Run/Hunting Creek Embayment	002	6.26E+13	8.70E+13	No	
	003/004	1.61E+12	3.65E+13	No	
	Total	6.42E+13	1.23E+14	No (Yes with CC*)	
Category II - Hoofs Run/Potomac	002	6.26E+13	0	Yes	
	003/004	1.61E+12	3.65E+13	No	
	Total	6.42E+13	3.65E+13	Yes	

- Category I alternatives meet the WLA with an AlexRenew collective consistency of 53%. This would require a plant performance of 60 cfu/100mL
- 2004 annual load is still less than the 2005 annual load without the extreme storm event

How is the WLA Met?

Category	Typical Year	TMDL Climate
Category	1984	Period 2004-2005
Category I – S1,S4,S7		Vac with 52% Callactive Consistancy and
Hoofs Run/Hunting	YES	Yes with 53% Collective Consistency and No Extreme Storm
Creek Embayment		NO EXTIGINE STOTII
Category II –S3	VEC	YES with No Extreme Storm
Hoofs Run/Potomac	YES	Collective Consistency Not Needed
Category III – S2	YES	YES
Potomac	i ES	I ES

Waste Load Allocation Conclusions

- * The Combined WLA to the three outfalls can be met:
 - For the typical year for all alternatives (4 overflows per year)
 - For the 2004-2005 Climate period
 - For the Category II Alternatives which discharge CSO-002 to the Potomac River
 - For the Category I Alternatives which discharge CSO-002 to Hunting Creek using Collective Consistency*
 - Does not meet the WLA with the October 2005 storm included

^{*}Note the collective consistency need is approximately 50% of AlexRenew load

City of Alexandria, Virginia

Public Participation Status

Public Participation Plan

- Public participation for the LTCPU will occur in three phases and mirror those described in the What's Next Alexandria handbook
 - Phase 1 (Winter 2015)
 - Phase 2 (May-June 2015)
 - VDEQ Update Meeting on May 11, 2015
 - External Review Panel on May 15, 2015
 - Ongoing engagement with various Civic Associations and the EPC
 - Public Meeting Scheduled for June 18, 7:00 pm 9:00 pm
 - Phase 3 (May-June 2016)

Planning Timeline

Next Steps

- Complete the Alternatives Analysis Technical Memoranda (May 2015)
- Complete the Water Quality Modeling (May 2015)
- * Phase 2 Public Outreach (June 2015)
- * Additional Feasibility Investigations (Summer 2015 2016)
- Implementation Plan (2016)
- Phase 3 Public Meeting (May-June 2016)
- Long Control Plan Update (August 2016)